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 The inverse problem of the calculus of variations is the problem of find-
ing conditions, ensuring that a given system of (ordinary or partial) differen-
tial equations coincides with the system of Euler-Lagrange equations of an 
integral variational functional. Its origin, dated 1886, is connected with the 
names of Sonin and Helmholtz; a newer modified version of the inverse 
problem for systems of ordinary second order equations, using variational 
integrating factors, was presented by Douglas in 1941. Since then the prob-
lem, lying on the border of the calculus of variations, mathematical analysis 
of differential equations, differential geometry, and topology of manifolds 
was studied by many authors.  However, in its generality it still belongs to 
mathematical problems that wait for a complete solution. The aim of this 
lecture series is to give an introduction to the local and global inverse 
problem.  
 First we consider the variationality problem for systems of ordinary 
second order differential equations. We derive the Helmholtz variationality 
conditions and find integrability conditions for the Douglas’s problem.  
 The global inverse problem is then formulated within the global varia-
tional theory, extending the classical calculus of variations from Euclidean 
spaces to smooth manifolds. The problem is to find conditions when a sys-
tem of equations on a manifold, which is locally variational, admits a global 
Lagrangian. We introduce underlying variational concepts in terms of differ-
ential forms, and study the theory of variational sequences, in which one ar-
row represents the Euler-Lagrange mapping of the calculus of variations. 
The sequence relates properties of the Euler-Lagrange mapping with the De 
Rham cohomology of the underlying manifold.  
 In these lectures we do not consider the inverse problem for vector 
fields on tangent bundles (sprays), which is related with the Douglas’s 
problem.  
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